首页> 外文OA文献 >Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation
【2h】

Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation

机译:解剖学约束神经网络(aCNN):在心脏图像增强和分割中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with learning based techniques. However, in most recent and promising techniques such as CNN based segmentation it is not obvious how to incorporate such prior knowledge. State-of-the-art methods operate as pixel-wise classifiers where the training objectives do not incorporate the structure and inter-dependencies of the output. To overcome this limitation, we propose a generic training strategy that incorporates anatomical prior knowledge into CNNs through a new regularisation model, which is trained end-to-end. The new framework encourages models to follow the global anatomical properties of the underlying anatomy (e.g. shape, label structure) via learnt non-linear representations of the shape. We show that the proposed approach can be easily adapted to different analysis tasks (e.g. image enhancement, segmentation) and improve the prediction accuracy of the state-of-the-art models. The applicability of our approach is shown on multi-modal cardiac datasets and public benchmarks. Additionally, we demonstrate how the learnt deep models of 3D shapes can be interpreted and used as biomarkers for classification of cardiac pathologies.
机译:结合有关器官形状和位置的先验知识是提高图像分析方法性能的关键。特别地,在由于图像获取的限制而使图像损坏并包含伪影的情况下,先验可能是有用的。可以使用基于学习的技术很好地捕获解剖对象的高度受限的性质。但是,在最新的有前途的技术(例如基于CNN的分割)中,如何整合此类现有知识并不明显。最先进的方法用作像素分类器,其中训练目标未包含输出的结构和相互依存关系。为克服此限制,我们提出了一种通用的训练策略,该策略通过端到端的新正则化模型将解剖学先验知识整合到CNN中。新框架鼓励模型通过学习的形状的非线性表示来遵循基础解剖结构的整体解剖学特性(例如形状,标签结构)。我们表明,所提出的方法可以轻松地适应不同的分析任务(例如图像增强,分割),并提高最新模型的预测准确性。我们的方法的适用性在多模式心脏数据集和公共基准中得到了证明。此外,我们演示了如何将所学的3D形状深度模型解释为心脏病理学分类的生物标记物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号